证明:什么情况下一定能保证椅子四只脚同时着地吗?
模型假设:
(1)底部四个角连线成的正方形
(2)地面高度不会突然急剧变化,不会有像台阶那样的高落差,地面高度连续变化
(3)椅子在任意位置至少有三条腿同时着地
一开始椅子放在地面,四个脚都着地,俯视图(上往下看)观察到四个脚的连线,若四个角都着地为初始状态ABCD,椅子以AC对X轴,BD为Y轴建立平面直角坐标系。假设椅子沿着OA逆时针旋转θ度数
利用椅子两个对脚的对称性,简化设f、g两个函数
f (θ)= 脚A到地面距离+脚C到地面距离
g(θ)= 脚B到地面距离+脚D到地面距离
试想一下,当f(θ)=0时,说明脚A到地面距离+脚C到地面距离和为0,则两个脚都在地面
前面根据模型假设(3)得到推论
f (θ)>0且g(θ)==0或者f (θ)==0且g(θ)>0或者f (θ)==0且g(θ)==0
f (θ)>0说明A或者C至少有1边脚着地,g(θ)==0说明脚B、D同时着地,得到3只脚着地
同理前两种情况都是3只脚着地,后一种是4只脚着地。
根据下面模型建立的情况,假设条件下存在四只脚着地的情况,将证明的问题转换成下述问题的证明
黄色和粉色部分
证明:
当θ=0时,h(0)=f(0)-g(0)=其结果>0
当θ=Π/2时,h(Π/2)=f(Π/2)-g(Π/2)=其结果<0
则必然存在θ1(0<θ1<Π/2),使得h(θ1)==0,得证明f(θ1)=g(θ1),一定存在四只脚着地得情况
零值定理为介值定理的推论.又名零点定理.其内容为:设函数f(x)在闭区间[a,b]上连续,且f(a)与 f(b)异号(即f(a)× f(b)<0),那么在开区间(a,b)内至少有函数f(x)的一个零点,即至少有一点ξ(a<ξ<b)使f(ξ)=0.
四脚连线是长方形也是可以的。
椅脚连线不一定是正方形,只要能出现这种情况,就可以成立。
借鉴B站视频和《数学模型》姜启源
第一章 建立数学模型 1.3椅子能在不平的地面上放稳吗_哔哩哔哩_bilibili